Efficient and Mild Oxidative Decarboxylation of Aryl-substituted Carboxylic Acids by Iron and Manganese Porphyrin Periodate Systems[†]

Shahram Tangestaninejad* and Valiollah Mirkhani

Department of Chemistry, Esfahan University, Esfahan, 81744, Iran

J. Chem. Research (S), 1998, 820–821[†]

The oxidative decarboxylation of α -aryl carboxylic acids to the corresponding carbonyl derivatives was observed in catalytic systems containing tetrabutylammonium periodate and metallotetraphenylporphyrins (metal = Fe^{III} or Mn^{III}) at room temperature.

There has been considerable growth in understanding the catalytic action of metalloporphyrins in the last twenty years.^{1,2} Numerous studies have been carried out employing metalloporphyrins in association with various single oxygen donors for the catalytic oxidation of alkenes,³ alkanes,⁴ amines,⁵ phenols,⁶ thiols⁷ and sulfides.⁸ Such investigations have resulted in a better understanding of oxidative metabolism of foreign organic compounds in biological systems by cytochrome P-450 and peroxidase. However, so far very few chemical model systems based on metalloporphyrin derivatives that catalyze the oxidative decarboxylation of carboxylic acids have been reported.^{9,10}

In this report we wish to describe an efficient decarboxylation reaction using iron(III) and manganese(III) tetraphenylporphyrins as catalysts, M(tpp)Cl (0.012 mmol), for decarboxylation of α -substituted acetic acids, R¹R²-CHCOOH (1 mmol), which afford the corresponding carbonyl derivatives in the presence of tetrabutylammonium periodate, Bu₄NIO₄ (2 mmol), in dichloromethane solution [reaction (1)].

$$\begin{array}{c} \mathsf{R}_{2}^{1}\mathsf{CHCOOH} & \xrightarrow{\mathsf{M}^{\text{III}}(\text{tpp})\mathsf{CI}} & \xrightarrow{\mathsf{R}_{2}^{1}}\mathsf{C}=\mathsf{O} & (1) \\ \\ \mathsf{R}_{2}^{2} & \xrightarrow{\mathsf{Bu}_{4}\mathsf{NIO}_{4}, \text{ r.t.}} & \operatorname{R}_{2}^{2} \end{array}$$

Table 1	Oxidative decarboxylation of α -aryl	carboxylic acids by M ^{III} (tpp)CI/Bu ₄ NIO ₄ ^a
---------	---	--

			Yield ^b (%) (t/h)	
Run	Substrate	Product	$Fe^{III}(tpp)CI/IO_4^-$	Mn ^{III} (tpp)Cl/IO ₄
1	PhCH ₂ COOH	PhCHO	88 (3)	84 (3)
2	Ph CHCOOH Ph	Ph C=O Ph	94 (3)	90 (3)
3	Ph CHCOOH H ₃ C	Ph C=O H₃C	92 (3)	87 (3)
4	Ph CHCOOH C₂H₅	Ph C=O C ₂ H ₅	93 (3)	90 (3)
5	Ph CHCOOH HO	PhCHO	95 (1)	92 (1)
6	^{Ph} , ссоон ^{Ph} он	Ph C=O Ph	94 (1)	92 (1)
7			93 (8)	89 (8)
8	CH2COOH	СНО	74 (4)	70 (4)
9	CH ₂ COOH	CHO	60 (8)	57 (8)
10	H ₃ CO N CH ₂ COOH CH ₃ CH ₃ CH ₃		71 (8)	61 (8)
11		H_3C H_3C H_3C H_3C H_2 H_3C H	94 (4)	90 (4)

^aReaction conditions: substrate (1 mmol), Bu₄NIO₄ (2 mmol), M^{III}(tpp)CI (0.012 mmol), CH₂Cl₂ (10 ml), room temperature. ^bIsolated yields.

*To receive any correspondence. †This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (*S*), 1998, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (*M*). The results which are summarized in Table 1 show that this catalytic system led to decarboxylation of arylsubstituted acetic acids to carbonyl derivatives in good isolated yields (57–95%) at room temperature. It was found that the principal product in all of the reactions was the carbonyl derivative and only a small amount of the alcohol derivative was observed. Here, we show that $M^{III}(tpp)Cl$ can catalyze the selective oxidation by Bu_4NIO_4 of alcohols to carbonyl compounds. Iron(III) tetraphenylporphyrin exhibits a greater catalytic power than the corresponding manganese(III) compound, whereas the reverse situation was observed for epoxidation of alkenes.¹¹

Decarboxylation of α -hydroxy carboxylic acids (Runs 5 and 6) were fast and completed in 1 h. By analogy with earlier studies,^{9,10,12} the faster reaction rates can be assigned to the formation of relatively stable α -hydroxy alkyl radicals from interaction of the carboxylic acids with a highly electrophilic intermediate generated by $IO_4^--M^{111}$ porphyrin.

The oxidation of anti-inflammatory drugs such as Indomethacin and Ibuprofen (Runs 10 and 11) afforded corresponding carbonyl derivatives as the major products in 61 and 94% yields, respectively. Such an oxidative decarboxylation pathway has been also observed during metabolism of non-steroidal anti-inflammatory drugs.¹⁰ In this report we have shown that these reactions can be efficiently mimicked using simple iron and manganese porphyrin.

Blank experiments, carried out on the α -aryl carboxylic compounds, showed that in the absence of catalyst, Bu₄NIO₄ has poor ability to decarboxylate aryl carboxylic acids at room temperature (5–10% yields). However, a literature search¹³ showed that Bu₄NIO₄ in refluxing dioxane was able to convert aryl acetic acids into the corresponding carbonyl derivatives in yields between 50–85% only at long times (8–48 h).

Experimental

All chemicals used were reagent grade. The porphyrin ligand, tpp, was prepared and metalated according to the literature procedures.^{14,15}

General Procedure for Oxidative Decarboxylation of α -Aryl Substituted Carboxylic Acids.—To a solution of the α -aryl carboxylic acids (1 mmol) in CH₂Cl₂ (10 ml), M^{III}(tpp)Cl (0.012 mmol) and Bu_4NIO_4 (2 mmol) were added and the solution stirred magnetically at room temperature for 1–8 h. Reaction progress was followed by TLC. Purification of crude products on a silica gel plate or silica gel column (eluent: CCl₄–Et₂O) afforded pure products in 57–95% yields (Table 1).

We are thankful to the Esfahan University Research Council.

Received, 21st July 1998; Accepted, 7th September 1998 Paper E/8/05700A

References

- 1 B. Meunier, Chem. Rev., 1992, 92, 1411.
- 2 M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, *Chem. Rev.*, 1996, **96**, 2841.
- 3 P. Battioni, J. P. Renaud, J. F. Bartoli, M. Reina-Artiles, M. Fort and D. Mansuy, J. Am. Chem. Soc., 1988, 110, 8462.
- 4 P. Hoffmann, A. Robert and B. Meunier, *Bull. Soc. Chim. Fr.*, 1992, **129**, 85.
- 5 J. R. Lindsay Smith and D. N. Mortimer, J. Chem. Soc., Perkin Trans. 2, 1986, 1743.
- 6 G. Labat, J. L. Seris and B. Meunier, Angew. Chem., Int. Ed. Engl., 1990, 29, 1471.
- 7 T. Buck, H. Bohlen, D. Wohrle, G. Schulz-Ekloff and A. Andreev, J. Mol. Catal., 1993, 80, 253.
- 8 E. Baciocchi, O. Lanzalunga and F. Marconi, *Tetrahedron Lett.*, 1994, **35**, 9771.
- 9 B. C. Gilbert, G. R. Hodges, J. R. Lindsay Smith, P. MacFaul and P. Taylor, J. Chem. Soc., Perkin Trans. 2, 1996, 519.
- 10 M. Komuro, Y. Nagatsu, T. Higuchi and M. Hirobe, *Tetrahedron Lett.*, 1992, **33**, 4949.
- 11 D. Mohajer and S. Tangestaninejad, *Tetrahedron Lett.*, 1994, 35, 945.
- 12 M. Z. Barakat and M. F. A. El-Wahab, J. Am. Chem. Soc., 1953, 75, 5731.
- 13 E. Santaniello, F. Ponti and A. Manzocchi, *Tetrahedron Lett.*, 1980, 21, 2655.
- 14 A. D. Adler, F. R. Long, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, J. Org. Chem., 1967, 32, 476.
- 15 A. D. Adler, F. R. Long, F. Kampas and J. Kim, J. Inorg. Nucl. Chem., 1970, 32, 2443.